skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Minias, Piotr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Extravagant ornaments are thought to signal male quality to females choosing mates, but the evidence linking ornament size to male quality is controversial, particularly in cases in which females prefer different ornaments in different populations. Here, we use whole-genome sequencing and transcriptomics to determine the genetic basis of ornament size in two populations of a widespread warbler, the common yellowthroat ( Geothlypis trichas ). Within a single subspecies, females in a Wisconsin population prefer males with larger black masks as mates, while females in a New York population prefer males with larger yellow bibs. Despite being produced by different pigments in different patches on the body, the size of the ornament preferred by females in each population was linked to numerous genes that function in many of the same core aspects of male quality (e.g., immunity and oxidative balance). These relationships confirm recent hypotheses linking the signaling function of ornaments to male quality. Furthermore, the parallelism in signaling function provides the flexibility for different types of ornaments to be used as signals of similar aspects of male quality. This could facilitate switches in female preference for different ornaments, a potentially important step in the early stages of divergence among populations. 
    more » « less
  3. Eyre-Walker, Adam (Ed.)
    Abstract Our knowledge of the Major Histocompatibility Complex (MHC) in birds is limited because it often consists of numerous duplicated genes within individuals that are difficult to assemble with short read sequencing technology. Long-read sequencing provides an opportunity to overcome this limitation because it allows the assembly of long regions with repetitive elements. In this study, we used genomes based on long-read sequencing to predict the number and location of MHC loci in a broad range of bird taxa. From the long-read-based genomes of 34 species, we found that there was extremely large variation in the number of MHC loci between species. Overall, there were greater numbers of both class I and II loci in passerines than nonpasserines. The highest numbers of loci (up to 193 class II loci) were found in manakins (Pipridae), which had previously not been studied at the MHC. Our results provide the first direct evidence from passerine genomes of this high level of duplication. We also found different duplication patterns between species. In some species, both MHC class I and II genes were duplicated together, whereas in most species they were duplicated independently. Our study shows that the analysis of long-read-based genomes can dramatically improve our knowledge of MHC structure, although further improvements in chromosome level assembly are needed to understand the evolutionary mechanisms producing the extraordinary interspecific variation in the architecture of the MHC region. 
    more » « less